M340 Solutions for in class Exam 2

For each of the following statements, decide if it is true or false and give a brief explanation for your answer.

1. The matrix $A=\left[\begin{array}{lll}4 & 0 & 1 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right]$ has an eigenvalue whose algebraic
multiplicity is 3 but the geometric multiplicity is 1
FALSE. The algebraic multiplicity is clearly 3 but,
$A-4 I=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \quad \operatorname{rank}=1, \operatorname{dim} N(A-4 I)=3-1=2$
$x_{3}=0$ but x_{1}, x_{2} are free. Then

$$
\begin{aligned}
{\left[\begin{array}{c}
x_{1} \\
x_{2} \\
0
\end{array}\right] } & =x_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
& =x_{1} \vec{E}_{1}+x_{2} \vec{E}_{2}
\end{aligned}
$$

i.e., there are 2 independant e-vects, \vec{E}_{1} and \vec{E}_{2} so geom mult=2
2. The vector valued functions $\vec{X}_{1}(t)=\left[e^{4 t}, 0,0\right]^{\top}$ and $\vec{X}_{2}(t)=\left[0, e^{4 t}, 0\right]^{\top}$ are solutions for $\vec{X}^{\prime}(t)=A \vec{X}(t)$ if A is the matrix from problem 2.

TRUE (plug into $\vec{X}^{\prime}(t)=A \vec{X}(t)$ and see)
3. The 3 by 3 matrix A has distinct real eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ with corresponding eigenvectors $\vec{E}_{1}, \vec{E}_{2}, \vec{E}_{3}$. Then the general solution for $\vec{X}^{\prime}(t)=A \vec{X}(t)$ is
$C_{1} e^{\lambda_{1} t} \vec{E}_{1}+C_{2} e^{\lambda_{2} t} \vec{E}_{2}+C_{3} e^{\lambda_{3} t} \vec{E}_{3}$ and for any initial condition $\vec{X}(0)=\vec{X}_{0}$ there is a unique set of constants C_{1}, C_{2}, C_{3} for which the initial condition is satisfied. The fundamental matrix for the matrix for A is

$$
M(t)=\left[e^{\lambda_{1} t} \vec{E}_{1}, e^{\lambda_{2} t} \vec{E}_{2}, e^{\lambda_{3} t} \vec{E}_{3}\right]
$$

and $M(t)$ is invertible for all t.
TRUE
Since the e-vals are distinct, the e-vects are linearly independant.
In this case $C_{1} e^{\lambda_{1} t} \vec{E}_{1}+C_{2} e^{\lambda_{2} t} \vec{E}_{2}+C_{3} e^{\lambda_{3} t} \vec{E}_{3}$ is the general solution for the ODE Since the e-vects are LI, they form a basis for R^{3} which means for any \vec{X}_{0} in R^{3} there is a unique set of constants C_{1}, C_{2}, C_{3} for which $C_{1} \vec{E}_{1}+C_{2} \vec{E}_{2}+C_{3} \vec{E}_{3}=\vec{X}_{0}$ Since $e^{\lambda_{1} t} \vec{E}_{1}, e^{\lambda_{2} t} \vec{E}_{2}, e^{\lambda_{3} t} \vec{E}_{3}$ are all solutions of the same system and they are LI at $t=0$, they are LI for all t. Then $M(t)$ has LI colums for all t so it is invertible for all t
4. The general solution for $\vec{X}^{\prime}(t)=A \vec{X}(t)+\vec{F}(t)$ is the sum of a solution for the homogeneous equation plus a particular solution of the form $\vec{X}_{p}(t)=M(t) \vec{C}(t)$ where $M(t)$ is the fundamental matrix for A and $\vec{C}(t)$ is obtained by solving $M(t) \vec{C}^{\prime}(t)=\vec{F}(t)$.

TRUE
If $\vec{X}_{H}(t)$ is a homogeneous solution and $\vec{X}_{p}(t)$ is a particular solution, then

$$
\frac{d}{d t}\left(\vec{X}_{H}(t)+\vec{X}_{p}(t)\right)-A\left(\vec{X}_{H}(t)+\vec{X}_{p}(t)\right)=0+\vec{F}(t)
$$

Using variation of parameters to find $\vec{X}_{p}(t)$ means assuming $\vec{X}_{p}(t)=M(t) \vec{C}(t)$
Substituting $\vec{X}_{p}(t)=M(t) \vec{C}(t)$ into the inhomogeneous system leads to the equation $M(t) \vec{C}^{\prime}(t)=\vec{F}(t)$ for the unknown $\vec{C}(t)$.
5. The only critical point for the dynamical system

$$
\begin{aligned}
u^{\prime}(t) & =-u(t)-v(t) \\
v^{\prime}(t) & =u(t)-v(t)
\end{aligned}
$$

is a spiral source at $(0,0)$.
FALSE
The system is linear and so has just one CP at $(0,0)$.
To classify this point we find

$$
J=\left[\begin{array}{cc}
-1 & -1 \\
1 & -1
\end{array}\right]
$$

which has e-vals $\lambda=-1 \pm i$. Then the CP is a spiral sink.
6. If A is an n by n matrix and $A \vec{E}=\lambda \vec{E}$, then $e^{A t} \vec{E}=e^{\lambda t} e^{(A-\lambda t)} \vec{E}=e^{\lambda t} \vec{E}$.

TRUE

$$
\begin{aligned}
e^{A t} \vec{E} & =e^{\lambda t} e^{(A-\lambda I) t} \vec{E} \\
& =e^{\lambda t}[\vec{E}+t(A-\lambda I) \vec{E}+\cdots] \\
& =e^{\lambda t} \vec{E} \text { since }(A-\lambda I) \vec{E}=\overrightarrow{0}
\end{aligned}
$$

7 If A is a 2 by 2 matrix with complex eigenvalue $\lambda_{1}=\alpha+i \beta$, and corresponding eigenvector $\vec{E}_{1}=\vec{U}+i \vec{V}$, then

$$
\vec{Z}(t)=e^{\alpha t}\{\cos \beta t \vec{U}-\sin \beta t \vec{V}\}
$$

is one real valued solution for $\vec{X}^{\prime}(t)=A \vec{X}(t)$.
TRUE

$$
\begin{aligned}
\vec{X}(t) & =e^{\lambda_{1} t} \vec{E}_{1}=e^{(\alpha+i \beta) t}[\vec{U}+i \vec{V}] \\
& =e^{\alpha t}\{\cos \beta t+i \sin \beta t\}[\vec{U}+i \vec{V}] \\
\operatorname{Re}\{\vec{X}(t)\} & =e^{\alpha t}\{\cos \beta t \vec{U}-\sin \beta t \vec{V}\} \\
& =\vec{Z}_{1}(t)
\end{aligned}
$$

Then $\vec{Z}_{1}(t)$ is real valued and solves $\vec{Z}_{1}^{\prime}(t)=A \vec{Z}_{1}(t)$.
8. If A is a 2 by 2 matrix with complex eigenvalues λ_{1}, λ_{2}, and corresponding eigenvectors \vec{E}_{1}, \vec{E}_{2} then

$$
\vec{X}(t)=e^{\lambda_{1} t} \vec{E}_{1}
$$

is a complex valued solution for $\vec{X}^{\prime}(t)=A \vec{X}(t)$, and the real part and imaginary part of $\vec{X}(t)$ are two linearly independent real valued solutions for $\vec{X}^{\prime}(t)=A \vec{X}(t)$.

TRUE

$$
\begin{aligned}
\vec{X}(t) & =e^{\lambda_{1} t} \vec{E}_{1}=e^{(\alpha+i \beta) t}[\vec{U}+i \vec{V}] \\
& =e^{\alpha t}\{\cos \beta t+i \sin \beta t\}[\vec{U}+i \vec{V}] \\
& =e^{\alpha t}\{\cos \beta t \vec{U}-\sin \beta t \vec{V}\}+i e^{\alpha t}\{\cos \beta t \vec{V}+\sin \beta t \vec{U}\} \\
& =\vec{Z}_{1}(t)+i \vec{Z}_{2}(t)
\end{aligned}
$$

Since $\vec{X}^{\prime}(t)=A \vec{X}(t)$, we find

$$
\begin{aligned}
{\left[\vec{Z}_{1}(t)+i \vec{Z}_{2}(t)\right]^{\prime} } & =A\left[\vec{Z}_{1}(t)+i \vec{Z}_{2}(t)\right] \\
\vec{Z}_{1}^{\prime}(t)-A \vec{Z}_{1}(t) & =-i\left[\vec{Z}_{2}^{\prime}(t)-A \vec{Z}_{2}(t)\right]=0
\end{aligned}
$$

9. The eigenvectors of the matrix $A=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 6\end{array}\right]$ form a basis for R^{3}.

TRUE. The matrix is symmetric so the eigenvalues are real and the eigenvectors are mutually orthogonal. Therefore they form a basis for R^{3}
10. The matrix $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$ satisfies $(A-I)^{2}=[0]$. Therefore

$$
e^{A t}=e^{t} e^{(A-I) t}=e^{t}[I+t(A-I)]=e^{t}\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]
$$

FALSE. The matrix satisfies $(A-2 I)^{2}=[0]$ so

$$
e^{A t}=e^{2 t} e^{(A-2 I) t}=e^{2 t}[I+t(A-2 I)+\cdots]=e^{2 t}\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]
$$

